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Abstract
In this study, we propose a discriminative training algorithm to
jointly minimize mispronunciation detection errors (i.e., false
rejections and false acceptances) and diagnosis errors (i.e.,
correctly pinpointing mispronunciations but incorrectly stating
how they are wrong). An optimization procedure, similar to
Minimum Word Error (MWE) discriminative training, is devel-
oped to refine the ML-trained HMMs. The errors to be min-
imized are obtained by comparing transcribed training utter-
ances (including mispronunciations) with Extended Recogni-
tion Networks [3] which contain both canonical pronunciations
and explicitly modeled mispronunciations. The ERN is com-
piled by handcrafted rules, or data-driven rules. Several conclu-
sions can be drawn from the experiments: (1) data-driven rules
are more effective than hand-crafted ones in capturing mispro-
nunciations; (2) compared with the ML training baseline, dis-
criminative training can reduce false rejections and diagnostic
errors, though false acceptances increase slightly due to a small
number of false-acceptance samples in the training set.
Index Terms: CAPT, mispronunciation detection and diagno-
sis, discriminative training, data-driven phonological rule ex-
traction

1. Introduction
The CALL (Computer Assisted Language Learning) systems
for improving second language learners’ English have gained
wide popularity within the community during the recent two
decades. A particular application of CALL, named “Computer-
Aided Pronunciation Training” (CAPT), aims at supporting pro-
ductive training by asking learners to read according to a given
prompt, pinpointing pronunciation errors and bringing forth
suggestion for improvements. Since this usually involves many
rounds of practice, reliable speech recognition technologies can
at times serve as a good substitute for human tutors.

Three metrics are commonly used to evaluate the effective-
ness of ASR for CAPT: (1) False Rejections – the number of
words that are recognized as mispronunciations when the ac-
tual pronunciations are correct; (2) False Acceptances – the
number of words that are misclassified as correct yet they are
actually mispronounced; (3) Diagnostic Errors – the number of
erroneous words in the diagnostic feedback for those truly de-
tected mispronunciations, e.g. The learner mispronounces /n/
as /l/, as in “light” for “night”, but the system gives erroneous
feedback as “You mispronounced /n/ as /r/”.

There are mainly three problems that prevent ASR technol-
ogy from being very successful in mispronunciation detection

and diagnosis:

• The classical speech recognition technology based on
Bayes’ analysis usually lacks a functional form of joint
distribution of the observation and the class identity.
Even if we know the real data distribution, the ML esti-
mation criterion does not optimize the classification per-
formance due to a different criterion. The case is wors-
ened since non-native speech samples are often limited.

• Mispronunciation patterns by non-native speakers are of-
ten unpredictable. Typical errors include insertion – ad-
dition of one or more sounds to a word, e.g. “poured”
may be mispronounced as /p ao r d ax/, deletion – omis-
sion of one or more sounds in a word, e.g. “salient” may
be mispronounced as /s ey l y ax n/, substitution – re-
placement of one or more sounds in a word, e.g. “river”
may be mispronounced as /w ih f axr/, etc. These phe-
nomena are often attribute to the L1 negative transfer,
and they constitute the sub-problem of mispronunciation
modeling.

• The acoustic-phonetic spaces of native and non-native
speakers can be quite different for the same English
phoneme under the commonly-adopted ARPABET an-
notation system. For example, the phone /b/ in Man-
darin is unvoiced in the syllable “bu”, while the phone
/b/ in the English word “book” is a voiced one, which is
non-existent in Mandarin. L2 learners tend to substitute
the mother tongue sound for the closest English one. The
mismatch may cause confusion in speech recognition.

This paper addresses the problems mentioned above, and
is organized as follows: The second section deals with the for-
mulation of an objective function for optimizing False Accep-
tance, False Rejection and Diagnostic Error, using discrimi-
native training techniques. In the third section, a data-driven
phonological rule extraction algorithm is discussed. Experi-
mental results and discussions will be given in the fourth sec-
tion. Conclusions are made in the fifth section.

2. Optimization for Mispronunciation
detection and error diagnosis

Discriminative training aims to optimize some measures of
goodness-of-recognition based on the training data [1]. As an
initial step, our work focuses on segmental errors. Suppose
we have R training utterances, indexed by r, r = 1, 2, ..., R.
For the rth utterance, it contains a sequence of Kr words, in-
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dexed by k, k = 1, 2, ...,Kr . We denote the canonical pronun-
ciation of the kth word by wrk(0), and all the other possible
word mispronunciations predicted for the kth word by wrk(n),
n = 1, 2, ..., Nrk.

The expected number of False Rejections is:

FFR(λ) =
R∑
r=1

Kr∑
k=1

Nrk∑
n=1

Pλ(wrk(n)|Ork)κδ(wrk(0) = trk)

(1)
where λ is the set of HMM parameters, trk is the phonetic tran-
scription for the kth word in the rth utterance. The posterior
probability Pλ(wrk(n)|Ork) is defined as:

Pλ(wrk(n)|Ork) =
pλ(Ork|wrk(n))P(wrk(n)|wrk(0))∑

v pλ(Ork|v)P(v|wrk(0))
(2)

where Ork is the observation for the kth word in the rth ut-
terance, P(v|wrk(0)) is essentially a conditional unigram lan-
guage model for the given canonical transcription. v is any pos-
sible mispronunciation given wrk(0). 0 < κ ≤ 1 is an expo-
nential scaling factor. δ(H) is an indicator function that equals
1 ifH is true, or 0 otherwise.

Similarly, the expected number of False Acceptances is:

FFA(λ) =
R∑
r=1

Kr∑
k=1

Pλ(wrk(0)|Ork)κδ(wrk(0) 6= trk) (3)

The expected number of Diagnostic Errors, complementary
to Correct Diagnosis under the True Rejection category, is de-
fined as:

FDE(λ) =
R∑
r=1

Kr∑
k=1

Nrk∑
n=1

Pλ(wrk(n)|Ork)κδ(wrk(0) 6= trk, wrk(n) 6= trk)

(4)

The objective is to jointly minimize FFR(λ), FFA(λ) and
FDE(λ). Consider the following superposition weighted on the
posteriors:

F(λ) = FFR(λ) + FFA(λ) + FDE(λ)

=

R∑
r=1

Kr∑
k=1

Nrk∑
n=1

Pλ(wrk(n)|Ork)κ1δ(wrk(0) = trk, wrk(n) 6= trk)

+

R∑
r=1

Kr∑
k=1

Pλ(wrk(0)|Ork)κ2δ(wrk(0) 6= trk)

+

R∑
r=1

Kr∑
k=1

Nrk∑
n=1

Pλ(wrk(n)|Ork)κ3δ(wrk(0) 6= trk, wrk(n) 6= trk)

(5)

If κ1 = κ2 = κ3 = 1, we see that:

F(λ) =
R∑
r=1

Kr∑
k=1

Nrk∑
n=0

Pλ(wrk(n)|Ork)δ(wrk(n) 6= trk)

=

R∑
r=1

∑
s

P
′
λ(s|Or)RawWordError(s, tr) (6)

where Or is the observation, tr is the phonetic transcription,
s is the competing Kr-word sentence, all for the rth training
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Figure 1: Hierarchical structure of the mispronunciation detec-
tion and diagnosis errors, where W is the total number of units
in the training data, ρ is the proportion of mispronounced units
in the data, and γ is the proportion of mispronounced units that
are modeled.

utterance, and ‘RawWordError’ is the number of mismatched
words between s and tr . P

′
λ(s|Or) is defined as:

P
′
λ(s|Or) =

pλ(Or|s)P(s|tr)∑
u pλ(Or|u)P(u|tr)

(7)

We see that the minimization of (6) is the same as MWE crite-
rion [1].

The computation of Pλ(wrk(n)|Or) is guided by a pho-
netic lattice that contains the canonical phonetic pronunciations
of a word, together with its mispronunciations against which
we wish to discriminate. The lattice is derived from a set of
phonological rules, which are described in section 4.

As it is considered less desirable to reject correct pro-
nunciations, one may exponentially weight the posterior
Pλ(wrk(n)|Or) in FFR by a factor of κ1 < 1 to attach greater
importance to FR. By doing so, the cost associated with False
Rejection can be penalized during F(λ) minimization.

Depending on the fraction of mispronunciations that can be
explicitly modeled, the posterior scaling can also be applied to
FFA and FDE to balance their relative importance within the
‘mispronunciation’ category, i.e. emphasis or de-emphasis. As
illustrated in Figure 1, to further take into account the possibility
of skewed distributions of correct pronunciations and mispro-
nunciations in the training data, one can use different scaling
factors to balance the contributions from each component in the
optimization process.

3. Corpus Preparation
Our investigation is based on the CU-CHLOE corpus [2], which
contains recordings of 100 Cantonese-speaking learners of En-
glish reading minimal pairs, confusable words, phonemic sen-
tences, and the Aesop’s Fable “The North Wind and the Sun”.
We split the whole corpus into training and testing sets, con-
sisting of 5,988 and 2,587 utterances respectively. The speech
has been annotated by well-trained linguists with the ARPA-
BET phonetic symbols.

4. Data-driven phonological rule extraction
To model the phonological production process of mispronunci-
ations by Chinese (i.e. Cantonese in this work) learners of En-
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glish, our previous work [3] used handcrafted context-sensitive
phonological rules:

φ→ ψ / λ ρ (8)

which indicates that, the phone φ is replaced by ψ under the left
and right context λ and ρ, respectively. Insertion and deletion
errors can be realized by letting either φ or ψ be ε (the null
phone). Also, word boundaries are denoted by #.

As we apply these phonological rules in describing the
speech of the second-language (L2) learner, we discover the
need for ordered applications. For example, our corpus of
non-native speech shows that that the word “MYTH” can be
mispronounced as /m eh f/ rather than /m ih th/. To gener-
ate this mispronunciation, we need ordered rules like “ih →
eh / m th”, “th → f / eh #” or “th → f / ih #”,
“ih→ eh / m f”.

4.1. Enhanced phonological rules

We extend the rule format in (8) slightly to allow incorporat-
ing multiple phones in “φ → ψ”, while the left and right con-
text are still described by a single phone. Hence the (word-
based) phonological rule for “MYTH” will become “eh th →
ih f / m #”. One possible shortcoming of this extension
is the data sparsity problem, due to an increase of the context
captured by the rules. However, this enhanced format of phono-
logical rules offers more expressive power to capture interesting
phone patterns.

4.2. Data-driven rule extraction

For a given word w: a canonical phonetic pronunciation
and a mispronunciation transcribed by a linguist, we ap-
ply “phonetically-sensitive string alignment” [3] to align two
phoneme strings. Different costs are assigned to different
phoneme pairs in the alignment. In this way, we obtain a set
of phone substitutions, deletions and insertions that maps the
canonical pronunciation to the mispronunciation. This is illus-
trated in Table 1.

Table 1: Phonetically-sensitive string alignment between the
canonical transcription and the mispronunciations for the word
“NORTH”.

0 n ao r th
1 l ao f
2 n ah th

The rule extraction procedure scans through each pair. We
match as many contiguous phones as possible. For example,
from the pair of phone string in rows 0 and 1 in Table 1, we gen-
erate the rules “n → l / # ao” and “r th → f / ao #”;
From the pair of phone string in rows 0 and 2, we obtain the
rule “ao r → ah / n th”.

4.3. Pruning rules

The procedure above generates a large number of rules. For
example, based on a total of 19,474 mispronounced word to-
kens in the training set, we obtain 3,200 rules. There is a need
to prune rules that are overly specific, e.g. “t r ae v el axr →
ch aa f l ax /# #”, which only applies to the word “TRAV-
ELER”. Rules can also be generated due to transcription errors
in the mispronunciations, or misread words. In any case, a large

number of phonological rules can generate an excessive num-
ber of mispronunciation variants, some of which may never oc-
cur, leading to over-generation. As a first attempt, we prune the
rules based on their triggering frequency in the training set (i.e.
the number of samples supporting this rule) with an occurrence
threshold of 2. We also prune rules with high phonetically sen-
sitive alignment cost per phone with a threshold of 14.5, which
is the average cost of all phone pairs. We model the remain-
ing rules {r}i with Finite State Transducers [4], whose “union”
operation takes the form:

R =
⋃
i

(ri) (9)

and composeRwith the canonical word transcription to predict
possible mispronunciation variants.

5. Experiments
The testing set contains 436 distinct words and 2,822 different
types of word pronunciations, among them, 2,349 are mispro-
nunciations that have not appeared in the training set; There are
a total of 19,366 word tokens in the testing set, among them,
8,564 of them are mispronounced.

5.1. Validating the phonological rules

We reference the 51 handcrafted phonological rule set in our
previous work [3]. These rules consider commonly confused
phones [2] with contextual constraints and first language phono-
tactic constraints [5], such as:

r → ε / V (10)
r → l / C (11)

where V stands for vowels and C stands for consonants. In gen-
eral, they are found in L2 phonology [2].

We compare with the phonological rules extracted and
pruned from the training set, in terms of the number of mispro-
nunciations and the number of word mispronunciations mod-
eled in the testing set. Results are shown in Table 2.

Table 2: The number of mispronunciations by type and the num-
ber of mispronunciations by token that are modeled by the two
sets of rules in the testing set.

Rule set Number by type Number by token
hand-crafted rules 411 3, 775
data-driven rules 652 5, 086

It should be noted that the hand-crafted rules result in 2,239
possible types of word mispronunciations out of the 436-word
vocabulary of the testing set, while the data-driven rules give
4,348. Among the 2,349 types of word mispronunciations that
are found in the testing set (based on manual phonetic transcrip-
tion), the hand-crafted and data-driven phonological rules attain
precision and recall values as shown in Table 3.

Table 3: Precision and recall comparison between the hand-
crafted rules and the data-driven rules on the testing set.

Rule set Precision Recall
hand-crafted rules 18.36% 17.97%
data-driven rules 15.00% 27.76%

Precision is defined as the types of modeled mispronuncia-
tions over the types of mispronunciation resulted from the rule
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Figure 2: Recognition performance on both the training and
testing set for the data-driven phonological rules.

set, and recall is the types of modeled mispronunciations over
the types of mispronunciations that appear in the testing set.
Since our goal is to capture possible word mispronunciations,
we tend to emphasize recall over precision. Therefore, We use
the data-driven phonological rule set in the acoustic model train-
ing. It is noted, however, that lower precision implies more
complex pronunciations during acoustic Viterbi decoding, pos-
sibly leading to more phonetic confusions.

5.2. Recognition results

To address the third problem raised in the introductory section,
we train cross-word, tied-state triphone HMMs on TIMIT in
Maximum Likelihood, and adapt those with the training set of
CU-CHLOE using Constrained Maximum Likelihood Linear
Regression [6]. This compensates the mismatch in the acoustic-
phonetic feature space between native and non-native speakers.
This model is utilized to align the mispronunciation phone lat-
tice. The alignment serves as a baseline in mispronunciation
detection and diagnosis. The alignment is also used as a basis
for discriminative training.

In discriminative training, the FA, FR and DE are treated
with equal weights. The acoustic models are refined under
the “Minimum Word Error” criterion, and compared with the
acoustic model trained under the ML criterion in Figure 2. In
the testing set, the performance gain in terms of the sum of FA,
FR and DE has decreased from 12,238 to 9,244 out of all the
19,366 word tokens. This is very promising and confirms the
benefits of discriminative training.

In particular, discriminative training gives a significant
boost in True Acceptance and Correct Diagnosis, as well as a
significant reduction in False Rejection and Diagnostic Error.
However, there is a slight increase in False Acceptance.

To be more specific, FR and TA offset each other among
the correct pronunciations. Given the fixed number of mispro-
nounced words in the testing set, the increase in CD lowers the
sum of FA and DE. However, the minimization of the sum of FA
and DE is achieved at the cost of sacrificing FA. This is because
FA has relatively small contribution to the objective function
due to a smaller number of samples (see Figure 2). On the other
hand, the growth of FA errors is caused by a sharper increase
of FA in the unmodeled mispronunciations than in the mod-
eled ones (see Figure 3). In other words, for the MWE-trained
HMM, the increased FA errors are caused by being unable to
model those mispronunciations in the lattice. The problem may

Mispronunciations (8564)

Unmodeled (3478)

FA
(1151 → 1410)

TR

DE
(2327 → 2068)

Modeled (5086)

FA
(1047 → 1174)

TR

CD DE
(1860 → 1079)

Figure 3: This is a subtree extracted from Figure 1. It shows a
comparison between the number of recognition errors (FA and
DE) for mispronounced words on the testing set, before and af-
ter MWE training.

be addressed by better modeling of mispronunciations in the
lattice.

6. Conclusions
Detecting and diagnosing mispronunciations and avoiding false
alarms is an important problem in CAPT. We show that the
joint optimization (minimization) of the False Rejections, False
Acceptances and Diagnostic Errors can help improve the abil-
ity of ASR in CAPT. The sum of the three objective func-
tions are actually equivalent to the MWE criterion in discrimi-
native training. The mispronunciations are better captured by
a set of phonological rules derived automatically from data
than the knowledge-driven hand-crafted ones. Compared with
the ML-trained HMM baseline, the MWE-trained HMM yields
promising results in the overall performance in terms of FA, FR
and DE. Better mispronunciation modeling is expected to reap
greater benefits from discriminative training.
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